今天上网冲浪看到一个题目:
问题
若 $(\sqrt{2}+1)^{99} = x + \sqrt{2}y(x,y\in\mathbb{N^*})$,则 $x^2 - 2y^2 = \underline{\qquad\quad}$ .
考虑 $1 + \sqrt{2}$ 的共轭根式 $1 - \sqrt{2}$,用二项式定理展开后易知 $(1-\sqrt{2})^{99} = x - \sqrt{2}y$,故所求为
$$ x^2 - 2y^2 = (x+\sqrt{2}y)(x-\sqrt{2}y) = (1+\sqrt{2})^{99}(1-\sqrt{2})^{99}=-1 $$$x,y$ 也是可以解出来的。设 $(1 + \sqrt{2})^n = a_n + \sqrt{2}b_n$,这里的 $a_n,b_n$ 是正整数,则 $(1 - \sqrt{2})^n = a_n - \sqrt{2}b_n$,从而
$$ \begin{align*} a_n &= \frac{1}{2}\Big[(1+\sqrt{2})^n + (1-\sqrt{2})^n\Big]\\ b_n &= \frac{\sqrt{2}}{4}\Big[(1+\sqrt{2})^n - (1-\sqrt{2})^n\Big] \end{align*} $$我们发现 $a_n,b_n$ 都是两个等比数列的和/差,类似斐波那契数列,它们一定具有二阶常系数齐次递推公式。容易验证:
$$ \begin{align*} a_{n+2} &= 2a_{n+1} + a_n\\ b_{n+2} &= 2b_{n+1} + b_n \end{align*} $$